Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Pharmaceutica Sinica ; (12): 533-540, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-922935

RESUMO

Hair roots induced by Agrobacterium rhizogene produce higher levels of secondary metabolites than non-induced plants, and the enhanced metabolic capacity is driven by the rol gene. We hypothesized that rol genes can be utilized to improve the biosynthesis of tropane alkaloids (TAs) in Atropa belladonna. In this study, the rolC gene from Agrobacterium rhizogene pRiA4 plasmid, driven by a CaMV35S promoter, was overexpressed in A. belladonna. The phenotypes, TAs content and transcriptional expression of key genes in TAs biosynthesis were analyzed in transgenic A. belladonna plants. Results show that transgenic A. belladonna exhibited a well-developed root system, male sterility, higher stamen column length than pistil, early flowering, internode shortening, smaller but more flowers, increased axillary buds and lateral buds, decreased apical dominance, and long and narrow leaves as compared to wild-type plants. Transgenic A. belladonna produced more TAs than wild-type plants, with the content of hyoscyamine, anisodamine and scopolamine reaching 2.58, 3.59 and 15.77-fold that of the control group, respectively. The gene expression of putrescine N-methyltransferase (PMT), tropinone reductase I (TRⅠ) and hyoscyamine 6-β-hydroxylase (H6H), key enzymes in TAs biosynthesis, were up-regulated compared with the control group. The above results indicate that the rolC gene enhances TAs biosynthesis in A. belladonna by up-regulating the expression of key enzymes in the TAs biosynthesis pathway, laying a foundation for genetic manipulation of A. belladonna to increase TAs content by increasing rolC gene expression.

2.
Acta Pharmaceutica Sinica ; (12): 574-581, 2019.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-780135

RESUMO

Tropinone reductase I (TRI) is a key branch point enzyme in the midstream of tropane alkaloids (TAs) biosynthesis pathway and represents an important target for TAs metabolic engineering, which can lead to metabolic flux of substrate tropinone to TAs. A novel TRI gene was isolated from Datura arborea, a woody resource plant, and designated as DaTRI2 (GenBank accession number is MH705164). The full-length cDNA of DaTRI2 with 1 135 bp exhibits a high sequence homology (96.8%) with DaTRI, and is predicted to encode a protein of 347 amino acids. Deduced DaTRI2 protein contain a conserved TGXXXGXG motif involved in NADPH binding, the catalytic N-S-Y-K tetrad motif and eleven amino acid residues important for binding to its substrate tropinone. The phylogenetic analysis revealed that DaTRI2 and other TRIs from Solanaceous plants belong to the same cluster and DaTRI2 exhibited closest phylogenetic proximity to TRIs from Datura. DaTRI2 was expressed in E. coli and the purified recombinant protein can catalyze both tropinone reduction and tropine oxidation with an optimum pH value of 8.0 and 9.6, respectively. When tropinone was used as the substrate, the Km and Vmax values of DaTRI2 at pH 6.4 were 210.05 μmol·L-1 and 69.6 nkat·mg-1 protein respectively, while the Km and Vmax values for tropine as the substrate were 188.03 μmol·L-1 and 114 nkat·mg-1 protein respectively, at pH 9.6. DaTRI2 transcript was most abundant in the young leaf, followed by the root. Cloning of DaTRI2 gene and biochemical analysis of recombinant DaTRI2 facilitate further research on the molecular mechanism on TAs biosynthesis in woody plants and provide a more potent candidate for TAs metabolic engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...